Introducing HD-Wave Technology

September, 2015

©2015 SolarEdge

PV Inverters – Slow Pace of Change solar adge

- PV inverter technology has made limited progress in improving size, efficiency, and manufacturing costs
 - For example, the maximum power per kg ratio* improved by only 5x
- Compare this to the computer industry, which has seen a doubling in processing power every 18-24 months

What is Holding Back Progress?

Conversion design has remained fundamentally unchanged

solaredge

- Existing technologies force the usage of large magnetics and cooling elements
 - This makes inverters expensive to manufacture and install

Inverters & TVs: A Comparable History solar adge

- Since the 1930s, TV technology was dominated by CRTs
- Even the best TVs were bulky, power hungry, used heavy glass and magnetics and were bound to mechanical constraints
- Improvements were limited:
 - Size due to physical nature of the components
 - Resolution due to analogue imaging
 - Difficult to manufacture
 - Costly components

Digital Electronics Changed the Picture solared

- In the 2000s, flat screen TVs unlocked the industry by replacing CRT and magnetics with electronic components allowing:
 - Slimmer and lighter TV sets, for wall-mounting
 - Higher resolution using digital processing
 - Scalable manufacturing
 - Lower cost

Average Living Room Television Size by Year

A New Era for Inverters – HD-Wave solar adge

Distributed switching and powerful DSP processing to synthesize a clean sine wave for a dramatic reduction in the magnetics and heavy cooling elements

Breaking the Mold

Magnetics and cooling elements are no longer the barriers to progress

Breaking the Mold

solaredge

Magnetics and cooling elements are no longer the barriers to progress

Current Technology

HD-Wave Technology

More Reliable Internal Components solaredge

Powered by HD-Wave

Inverter with DC Disconnect Switch

Current SolarEdge Inverter *

Power: **7.6 kW** Volume: **46.3 liters / 12.2 gallons** Weight: **25 kg / 55 lbs** Efficiency CEC: **98%** * Already one of the smallest string inverters on the market

Next Gen HD-Wave Inverter

solar aver

Power: **7.6 kW** Volume: **22.5 liters / 5.9 gallons** Weight: **11.5 kg / 25 lbs** Efficiency CEC: **99%**

Powered by HD-Wave

Current SolarEdge Inverter *

Power: 6 kW Volume: 29.9 liters / 7.9 gallons Weight: 22 kg / 48.5 lbs Efficiency: 97.5% * Already one of the smallest string inverters on the market

Next Gen HD-Wave Inverter

Power: 6 kW Volume: 14.5 liters / 3.8 gallons Weight: 9.5 kg / 21 lbs Efficiency: 99%

What Does the Future Hold?

- HD-Wave will separate even further from the pack in efficiency and power per weight ratings
- Continuous improvement based on increased processing power and silicon integration

A New Era for PV Inverters

- Small and lightweight at <10 kg
- 99% weighted efficiency (33%-50% less losses than the market)
- Built-in meter with ±0.5% accuracy
- Up to 1.5 kW self-sustaining power outlet option (for backup power)
- Superb reliability due to lower heat dissipation & thin-film instead of electrolytic capacitors
- Up to 165% oversizing allowed

Additional HD-Wave Slides

©2015 SolarEdge | 14

Traditional PV Inverter

Current technology is based on:

- Silicon-based electronics to create a crude sine wave
- 2 Magnetics to filter a sine wave
- Metallic enclosures, cooling systems and fans to dissipate heat

Magnetics and cooling hold back inverter technology today

False Dawn of Advanced Components

- solaredge
- Emergence of SiC & GaN switching devices heralded as breakthrough in power electronics, bringing:
 - Increased inverter efficiency, resulting in smaller heatsink
 - Estimated 20 to 50% reduced inverter costs
- However, any improvements in efficiency overshadowed by:
 - 2-5x higher pricing, negating savings in magnetics & heatsink cost
 - Limited sourcing a risk for inverter suppliers
 - Unproven reliability

Only 20% SiC cost reduction in 5 years since release

The HD-Wave Revolution

SolarEdge technology based on:

- 1 Distributed **multi-level switching** elements to create a sine wave
 - Powerful DSP processor synthesizes a clean sine wave
- 2 Less magnetics is required to create the AC sine wave
- 3 Highly efficient design with minimal heat loss to reduce cooling requirements

Inverter design no longer restrained by mechanical components

HD-Wave vs. Traditional Technology solar action

- 1 Distributed multi-level switching elements creates a sine wave
 - Powerful DSP processor synthesizes a clean sine wave

- Less magnetics is required for filtering
- Highly efficient design with minimal heat loss reduces cooling requirements

- 1 Today, inverter switching elements create a **crude** sine wave
- 2 Magnetics filter a sine wave
- 3
- Metallic enclosures, cooling systems and fans dissipate heat

Cooling 3

Filter Magnetics

AC

What is Distributed Switching?

 Many silicon transistors and a powerful DSP processor to synthesize a clean sinus wave

From Single to Multi-Level Switches

- The distributed switching elements are highly efficient
 - Reduced heat losses eliminates need for large and heavy aluminum heatsink

solaredge

Thank you

Emailinfo@solaredge.comTwitterwww.twitter.com/SolarEdgePVBlogwww.solaredge.com/blog

Websites

www.solaredge.com www.solaredge.us www.solaredge.de www.solaredge.jp www.solaredge.fr www.solaredge.it